Boron carburide is a high-performance carbon compound, which is composed mainly of boron, carbon, and other elements. The chemical formula for B4C is B4C. It has high hardness and melting point. It’s also widely used by industries, the military, aerospace and other fields. This article will give a detailed description of boron carbide’s physical and chemical characteristics, its preparation methods, its performance characterization, as well as the application fields.
Physical properties
Boron carbide, a non-metallic inorganic material, has a mass density of 2.52g/cm3. It has a cubic lattice structure, a dense black crystal and a 0.243nm lattice constant. Boron carbide exhibits a low electrical conductivity of only 10-6S/m, and has excellent insulation. Its thermal conductivity (97W/m*K) is lower than metals, silicon and ceramics but higher than glass and other materials.
Chemical properties
Boron carbide exhibits chemical stability, and it is not reactive to acids and alkalis. B4C is reactive with H2O and O2. High temperatures can generate B2O3, CO etc. B4C has anti-oxidant and corrosion resistance. This makes it a good choice for long-term usage in high-temperature, corrosive environments.
Preparation method
Preparation methods for boron carbide The main methods are the carbon thermal decomposition method, arc melting and chemical vapour deposit method.
Methode de réduction du carbothermal
Carbon thermal reduction (CTR) is widely used to prepare boron carbide . This method generates carbon dioxide and boron carburide by melting boric black and carbon. The reaction formula is B2O3+3C + B4C+CO. The reaction temperature ranges from 1500 to 1700°C. The method has the advantage of being simple, low-cost, and easy to use. However, the boron carbide produced is not of high purity.
Arc melting method
In the arc melting process, graphite electrodes are heated and melted in an arc with boric acid to create boron carbide. The reaction equation is: B2O3+3C + B4C. The reaction temperature ranges between 1800 and 2000°C. This method yields boron-carbide with high purity, fine particle size and a complex and expensive process.
Chemical vapour deposition method
Chemical vapour deposition uses the reaction of gaseous carbon black and borane at high temperature to create boron carburide. The reaction formula is B2H6+6C B4C+6H2. The reaction temperature ranges between 1000-1200°C. This method yields boron-carbide with high purity, superfine particles and a complex, expensive process.
Performance Characterization
Physical, chemical, mechanical, and other properties are primarily considered when describing the performance of boron carbide.
Physical Property
Density, conductivity, and thermal conductivity are the main physical properties of Boron carbide. Among these, the density is 2.52g/cm3, conductivity is 10-6S/m, and thermal conductivity 97W/m* K.
Chemical Property
Boron carbide exhibits chemical stability, and it is not reactive to acids and alkalis. B4C is reactive with H2O and O2. High temperatures can generate B2O3, CO etc. B4C has anti-oxidant and corrosion resistance. This makes it suitable for long term use in high temperature and corrosive environment.
Mechanical property
Boron carbide’s high hardness, melting point, and heat transmission make it a popular material in many industries. Hardness of 3500kg/mm2, melting point 2450, and heat transfer rate 135W/m*K are among the characteristics that make boron carbide so popular in industries, military, aerospace, and other fields.
RBOSCHCO
RBOSCHCO, a global chemical material manufacturer and supplier with more than 12 years of experience in the field, is known for its high-quality Nanomaterials. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. RBOSCHCO, a leading manufacturer of nanotechnology products, dominates the market. Our expert team offers solutions that can help industries improve their efficiency, create value and overcome various challenges. Send an email if you’re looking for Boron Carbide to [email protected]