A Revolution in the Abandonment of a New Generation of Semiconductor Conductor Materials

Next-Generation Semiconductor Wires: Cobalt

The invention of chip/integrated circuit/semiconductor is the premise for human to enter the information society. As the largest manufacturing sector in the modern era, the chip industry, or semiconductor industry, is at the forefront of technological innovation and represents human industrial manufacturing capabilities. The third industrial revolution, based on semiconductor, has been continually detonated, both by policy and market, with the assistance of artificial intelligence (and big data). China’s semiconductor sector has provided the greatest development opportunities since the establishment of the People’s Republic of China. The pace of innovation for new materials will increase as Moore’s Law approaches its end. Today, twenty years after IBM introduced “copper”, the “era” of “cobalt in the semiconductor industry will officially begin.

Recent years have seen many key moments in the semiconductor industry, most notably in transistor architectures and device technology. There is a new turning point coming in the semiconductor industry. Innovation of new materials is being followed by “cobalt”, which will slowly end “tungsten” or “copper”.

Age of Cobalt Wires – 10 nm & 7 nm Nodes

As the manufacturing technology for semiconductors became more efficient below 10 nanometers in size, “copper”, the conductor metal, began to have problems. Insufficient conduction rate and other limitations made it impossible to reach the 10 nanometers or 7 nanometers nodes. To overcome these limitations, major semiconductor producers and equipment companies began investing in the development and research of new materials.


Applied Materials has a reputation for being a leader in the field of semiconductor equipment. It’s the pioneer semiconductor manufacturer to employ “cobalt,” instead of traditional “copper”, and “tungsten” conductor materials. It is poised to implement such an industrial revolution in commercial chips. This has historic significance.


With advanced technology between 10 and 7, “cobalt” can be used as a conductor material to reach the goals of higher conductivity and lower power consumption. The future may see it drop to as low as 5 or 3 nanometer process points.


Metal-coated contact and wires perform better when smaller than those of transistors. When the wire is compared with a straw it will be more susceptible to blocking. There are three main criteria for selecting the right wire materials: filling ability, resistance, and reliability.


Aluminium is less reliable for processes exceeding 30 nanometers. However, copper is highly-qualified and is still an important metal. Unfortunately, performance for tungsten (aluminum) and copper drops to below 20 nanometers in high-end processing. However, cobalt is a powerful new material that has a high filling power, resistivity, and reliability. It is particularly useful in the low-end semiconductor technology below 10/7 nanometers.

Semiconductor fields would be a big market for cobalt

The advantages cobalt has as a small-scale semiconductor make it possible for the industry to expect that “cobalt”, metal materials, will begin at 7/10 nanometers in order to enter the manufacturing of semiconductor wires. Expect “cobalt” materials to expand beyond the 5-nanometer process.


Intel is believed to have revealed that the IEEE will include 10 parts interconnection layers on nanometer technology technology nodes. Details of imported cobalt metal, which can be found in the 10 nm bottom node interconnection of 2 layer imported cobalt, can increase electron mobility and decrease the access of double resistance. It’s a large number of semiconductor manufacturing companies.


(aka. Technology Co. Ltd. (aka. High purity, small particles size, and low impurity are the hallmarks of our nano cobalt powder. We can help you if the price is lower.


Inquiry us